新聞中心Info
合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 為什么葡萄酒會從下部往杯子的上部走呢?
> 氨基改性硅油柔軟劑的表面張力、透水率、分層測試(三)
> ?表面張力大容易潤濕嗎,表面張力的影響因素有哪些
> 可視化實驗方法研究電場作用下液滴撞擊表面的動態(tài)行為(一)
> 臨界表面張力、噴霧距離等對成熟期煙草農藥霧滴附著關鍵指標的影響——結果與討論、結論
> 兩種烷基咪唑亞磷酸酯離子液體熱穩(wěn)定性、表面張力測定(二)
> 不同水淹程度的油藏環(huán)境下微生物提高采收率、采出液的表面張力與界面張力的變化(二)
> Delta-8 動物胃腸道體內中藥物的溶解度的測定——結果和討論
> 表面張力小實驗——水中取硬幣
> Wilhelmy吊板法測試溫度、鋁元素和稀土元素對鋅浴表面張力的影響
推薦新聞Info
-
> 燒結礦致密化行為研究:不同堿度條件下熔體的表面張力、表觀黏度值(一)
> 如何提高非離子表面活性劑的表面張力預測精度
> 不同水淹程度的油藏環(huán)境下微生物提高采收率、采出液的表面張力與界面張力的變化(二)
> 不同水淹程度的油藏環(huán)境下微生物提高采收率、采出液的表面張力與界面張力的變化(一)
> 新型助排劑配方組分、對表/界面性能的影響及助排效果(三)
> 新型助排劑配方組分、對表/界面性能的影響及助排效果(二)
> 新型助排劑配方組分、對表/界面性能的影響及助排效果(一)
> 電噴霧質譜離子源技術優(yōu)化策略:降低外鞘液表面張力,加速液滴溶劑蒸發(fā)
> 4種油醇烷氧基化物平衡和動態(tài)表面張力、潤濕性、泡沫性、乳化性質研究(四)
> 4種油醇烷氧基化物平衡和動態(tài)表面張力、潤濕性、泡沫性、乳化性質研究(三)
誘導期測定法研究NaCl的添加對碳酸鋰固-液界面張力等成核動力學參數(shù)影響——過飽和度的計算
來源:高等學?;瘜W學報 瀏覽 752 次 發(fā)布時間:2025-02-14
2過飽和度的計算
在溶液中,Li2CO3晶體與Li+,CO2?3離子之間的固液平衡由下式來描述:
Li2CO3(s)?2Li+(aq)+CO2?3(aq)(2)
在熱力學中,晶體在溶液中的過飽和度(S)為組分活度的乘積與熱力學平衡常數(shù)(KSP)的比值.因此,Li2CO3晶體在溶液中的S計算如下:
S=a2Li+aCO2?3KSP=(mLi+γLi+)2(mCO2?3γCO2?3)KSP(3)
式中:aLi+和aCO2?3(mol/kg)分別為溶液中Li+和CO2?3的活度;mLi+和mCO2?3(mol/kg)分別為溶液中Li+和CO2?3的質量摩爾濃度;γLi+和γCO2?3分別為溶液中Li+和CO2?3的活度系數(shù).
2.1離子活度系數(shù)的計算
由于溶液活度系數(shù)的數(shù)值很難通過實驗方法獲得,所以,常用電解質溶液的活度系數(shù)模型來計算.如,高濃電解質溶液中常用的活度系數(shù)模型有半經(jīng)驗的Pitzer方程[28]、擴展的平均球近似模型[29,30]和電解質NRTL模型[31]等.本文選擇OLI電解質與水化學物性分析軟件[20]內嵌的Bromley-Zemaitis方程[22,23]來計算溶液中離子的活度系數(shù).此方程適用于溫度范圍為273.15~473.15 K、溶液濃度范圍為0~30 mol/L的體系.實驗中溶液體系的溫度范圍為288.15~323.15 K,溶液濃度范圍為1.014~3.365 mol/L,均在方程的適用范圍內.
因此,式(3)中離子的活度系數(shù)可由OLI電解質與水化學物性分析軟件[20]內嵌的Bromley-Zemaitis方程[22,23]來計算:
lgγi=?AZ2iI√1+I√+∑j[(0.06+0.6Bij)|ZiZj|(1+1.5I/|ZiZj|)2+Bij+CijI+DijI2](|Zi|+|Zj|2)2mj(4)
式中:i表示溶液中的陽離子;j表示溶液中的陰離子;A為Debye-Huckel系數(shù);I(mol/L)為溶液的離子強度;B,C,D為與溫度(t/℃)相關的經(jīng)驗參數(shù),Bij=B1ij+B2ijt+B3ijt2,Cij=C1ij+C2ijt+C3ijt2,Dij=D1ij+D2ijt+D3ijt2;Zi,Zj分別為陽、陰離子的電荷數(shù).對于溶液中陰離子活度系數(shù)的計算,將式(4)中下標i表示溶液中的陰離子,下標j表示溶液中的陽離子即可.
2.2熱力學平衡常數(shù)的計算
式(3)中的熱力學平衡常數(shù)可由反應(2)的標準吉布斯自由能(ΔG0)
來計算:
Ksp=exp(?ΔG0RT)=exp(?∑νiμ0iRT)(5)
式中:μ0i為反應各組分i的偏摩爾吉布斯自由能;νi為反應各組分i的化學計量系數(shù);T(K)為開氏溫度;R(8.314 J·k?1·mol?1)為摩爾氣體常數(shù).可見,若要得到反應的熱力學平衡常數(shù)值,必須知道反應各組分的偏摩爾吉布斯自由能.在OLI電解質與水化學物性分析軟件中可由修正的HKF模型[24~26]來計算各組分的偏摩爾性質,該模型是溫度和壓力的函數(shù):
X0T,P=X(T,P,a1,a2,a3,a4,c1,c2,ωˉˉ)(6)
式中:X表示標準狀態(tài)的熱力學性質,包括5個標準偏摩爾性質(標準偏摩爾體積Vˉˉˉ0、標準偏摩爾熱容Cˉˉˉ0P、標準偏摩爾熵Sˉˉ0、標準偏摩爾焓ΔHˉˉˉ0T,P和標準偏摩爾吉布斯自由能ΔGˉˉˉ0T,P)以及7個模型參數(shù)(a1,a2,a3,a4,c1,c2和ω).該模型的適應范圍廣泛,甚至可用于計算組分在溫度高達1273.15 K、壓力高達500 MPa時的標準偏摩爾性質.計算涉及到的主要組分的標準偏摩爾性質及HKF模型參數(shù)列于表S1和表S2(見本文支持信息).
計算得到溶液中離子的活度系數(shù)以及各組分的熱力學平衡常數(shù)后,代入式(3)即可得到Li2CO3的過飽和度數(shù)值.在不同溫度、不同溶液體系以及不同溶液濃度時Li2CO3過飽和度的計算結果見表S3和表S4.